intrinsic identifier - definição. O que é intrinsic identifier. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é intrinsic identifier - definição

EQUATION WHICH DEFINES A CURVE INDEPENDENTLY OF A COORDINATE SYSTEM
Intrinsic curve; Intrinsic coordinates

Intrinsic factor         
MAMMALIAN PROTEIN FOUND IN HOMO SAPIENS
Intrinsic Factor; Intrinsic factor complex; Gastric intrinsic factor; GIF (gene)
Intrinsic factor (IF), cobalamin binding intrinsic factor, also known as gastric intrinsic factor (GIF), is a glycoprotein produced by the parietal cells (in humans) or chief cells (in rodents) of the stomach. It is necessary for the absorption of vitamin B12 later on in the distal ileum of the small intestine.
Unique identifier         
IDENTIFIER WHICH IS UNIQUE AND PERMANENT WITHIN A SUBSET OF SPACE AND TIME
Unique Identification Number; Unique identifiers; Unique Identifier(UID); Unique Object Identifier; Unique identifying code
A unique identifier (UID) is an identifier that is guaranteed to be unique among all identifiers used for those objects and for a specific purpose. The concept was formalized early in the development of Computer science and Information systems.
CLSID         
128-BIT NUMBER USED TO IDENTIFY INFORMATION IN COMPUTER SYSTEMS
GUID; Globally unique identifier; UUID; Clsid; Guid; CLSID; Uuid; REFIID; UUIDs; Globally Unique Identifier; Universally Unique Identifier; Libuuid; CUID; Cuid; Universal unique identifier; Globally unique universal identifier; Globally unique; Universally unique
CLasS IDentifier (Reference: COM)

Wikipédia

Intrinsic equation

In geometry, an intrinsic equation of a curve is an equation that defines the curve using a relation between the curve's intrinsic properties, that is, properties that do not depend on the location and possibly the orientation of the curve. Therefore an intrinsic equation defines the shape of the curve without specifying its position relative to an arbitrarily defined coordinate system.

The intrinsic quantities used most often are arc length s {\displaystyle s} , tangential angle θ {\displaystyle \theta } , curvature κ {\displaystyle \kappa } or radius of curvature, and, for 3-dimensional curves, torsion τ {\displaystyle \tau } . Specifically:

  • The natural equation is the curve given by its curvature and torsion.
  • The Whewell equation is obtained as a relation between arc length and tangential angle.
  • The Cesàro equation is obtained as a relation between arc length and curvature.

The equation of a circle (including a line) for example is given by the equation κ ( s ) = 1 r {\displaystyle \kappa (s)={\tfrac {1}{r}}} where s {\displaystyle s} is the arc length, κ {\displaystyle \kappa } the curvature and r {\displaystyle r} the radius of the circle.

These coordinates greatly simplify some physical problem. For elastic rods for example, the potential energy is given by

E = 0 L B κ 2 ( s ) d s {\displaystyle E=\int _{0}^{L}B\kappa ^{2}(s)ds}

where B {\displaystyle B} is the bending modulus E I {\displaystyle EI} . Moreover, as κ ( s ) = d θ / d s {\displaystyle \kappa (s)=d\theta /ds} , elasticity of rods can be given a simple variational form.